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Abstract—Using the theory of linear operators, guided elec-
tromagnetic wave propagation in inhomogeneous (non-recip-
rocal) biisotropic planar structures is analyzed in terms of a 2

x 2 matrix differential operator. Based on the concept of ad-

joint waveguide, a new bi-orthogonality relation for the guided

hybrid modes is derived. For the special case of reciprocal bi-
isotropic media or chiral media, the linear-operator formalism
leads to a self-adjoint problem. As an example of application,

a general analysis of the radiation modes of a grounded chiros-

labguide is also presented.

I. INTRODUCTION

A BIANISOTROPIC medium with isotropic depen-

dence among the field vectors is called a biisotropic

medium [1]. This type of medium was conceived by Tel-

legen in 1948 in order to introduce the gyrator [2]. Since

then biisotropic media have also been referred to as gy -

rational or Tellegen.

Chirality is a phenomenon known in optics since the

beginning of the 19th century: in 1811 Arago discovered

that crystals of quartz are optically active [3]. Later, in

1848, Pasteur postulated that optical activity was caused

by the lack of symmetry (or chirality) of some molecules

[4]. Indeed, chirality is a geometric concept related to ob-

jects which cannot be brought into congruence with their

enantiomorphs [5].

Due to recent advances in polymer science and in the

manufacture of artificial dielectrics, it is conceivable that

chiral materials for applications at microwave or milli-

meter wavelengths can be made [5]. These advances have

prompted renewed interest on electromagnetic wave prop-

agation and radiation in chiral media,

A chiral medium, as described by some researchers

(e.g., [5], [6]), is a reciprocal medium characterized by a

three-parameter model. However, as mentioned by Mon-

zon in [7] the four-parameter (or biisotropic) medium is

also chiral in nature and obviously more general. Never-

theless, in order to avoid any risk of confusion, only the

three-parameter medium will be called chiral herein.

In this paper, based on Maxwell’s curl equations for

source-free regions together with the set of constitutive

relations for biisotropic media in the EH representation
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[1], a linear-operator formalism for the analysis of inho-

mogeneous biisotropic planar waveguides is presented. In

fact, for these (open or closed) waveguides, using the

theory of linear operators and through a suitable definition

of a two-vector transverse mode function, the problem of

guided electromagnetic wave propagation is reduced to an

eigenvalue equation related to a 2 X 2 matrix differential

operator. Introducing the concept of adjoint waveguide

[8], a new bi-orthogonality relation [9] for the guided hy-

brid modes is derived. One should note that this linear-

operator formalism is applicable to multilayered wave-

guides with inhomogeneous and non-reciprocal biiso-

tropic layers. However, no specific example of applica-

tion for this general case is worked out. Further

investigations are needed in this area. Although the math-

ematical framework of this paper also uses the theory of

linear operators as the one developed by the authors for

the analysis of anisotropic layered waveguides [10], the

present formalism is more general since it leads to a norz-

self-adjoint problem due to the non-reciprocal nature of

material characteristics.

For multilayered waveguides with homogeneous lay-

ers, the general formalism is reduced to a 2 x 2 coupling

matrix eigenvalue problem which will be presented else-

where [11] and which is also similar to the analytical ap-

proach developed for anisotropic layered waveguides pre-

sented in [12].

For the special case of chiral (reciprocal) media, the

linear-operator formalism leads to a self-adjoint problem.

Therefore, with the theory developed in Section II and for

closed waveguides (regular problems), the completeness

of the set of eigenfunctions can be rigorously guaranteed

due to self-adjointness [9]. Following a different ap-

proach, Engheta and Pelet also have presented several or-

thogonality relations for (reciprocal) chirowaveguides

[13].
Finally, as an example of application, a general anal-

ysis of the radiation modes of a grounded chiroslabguide

is also presented. One should note that, as far as the au-

thors are aware, this problem has never been addressed in

the literature—in spite of its potential interest for milli-

meter-wave structures. The complementary analysis of the

surface modes in a grounded chiroslabguide is skipped

over since it was already presented by the authors in [11],

although this was on the basis of a different method which

is unable to establish any orthogonality relation. More-
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over, following different approaches, the surface modes

of a symmetric chiroslabguide were also analyzed in [14]

and [15]. Analyses for the parallel-plate chimwaveguide

[16], [17], the circular metal chirowaveguide [18], and

the circular dielectric chirowaveguide [18], have also been

presented.

II. LINEAR-OPERATOR FORMALISM

The aim of this section is to reduce the problem of

guided electromagnetic wave propagation in (open or

closed ) inhomogeneous (non-reciprocal) biisotropic

planar waveguides to a linear-operator formalism. Ac-

cording to this formalism, linear independence of trans-

verse mode functions is guaranteed. Therefore, assuming

completeness, an arbitrary electromagnetic field in a bi-

isotropic planar waveguide can be expanded in terms of

these transverse mode functions.

For biisotropic media the constitutive relations may be

written as [1], [7]

D = 6~(EE + Z(yyl) (la)

B = ~O(YO@ + KH) (lb)

where E, p, ~ and { are dimensionless parameters and 20

= Y~l = ko/(@co) = (QyLo)/ko.

For the particular case of reciprocal media the pseudo-

scalars (~, ~), which are responsible for spatial dispersion

in biisotropic media, are such that & + ~ = O [7].

Introducing normalized distances marked with primes

(e.g., x’ = kOx, y’ = key, z’ = kOz) and a normalized

“magnetic field” 3(! such that

K! = ZOH (2)

then, from Maxwell’s curl equations for source-free re-

gions together with (la) and (lb), one may write

–jV’X3C=e E+~3C (3a)

jV’x E=~E+p3C (3b)

where time-harmonic field variation of the form exp ( jcot)

is adopted and V = koV’.

Only planar structures which are uniform and infinite

in they direction (hence d /dy = O) and inhomogeneously

filled with biisotropic media in the x direction will be ana-

lyzed. More precisely: E(.x’ ), u(x’ ), $(x’ ) and ~(x’ ) are

piecewise-continuous functions of x’ (i.e., the general

case of inhomogeneous layers is included). Moreover,

plane wave

considered;

propagation of the form exp ( –j@z’ ) will be

~ is an effective refractive index given by

(4)
K(j

where k is the longitudinal wavenumber. Herlce, in (3a)

and (3 b), one has

V’ = axci – j/3~ (5)

where i3X,stands for 8/ax’. ,
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A. Eigenvalue Equations for Inhornogeneous

Waveguides

In order to recast the electromagnetic field equations in

terms of a single eigenvalue equation, the following def-

inition of a two-vector transverse mode function (or ei-

genfunction) is introduced:

@ = [Ey, KY]T (6)

where superscript ~ stands for transpose. Therefore, from

(l)-(6), one obtains the eigenvalue equation

z“@=(32m”@ (7)

which is formally similar to [10, eq. (19)]. The linear dif-

ferential operator ~ is given by

ccl=

LA A

and the “weight” operator W by

(8)

(9)

(lo)

One should note, once again, that (7) is applicable to

non-reciprocal biisotropic multilayered waveguides with

inhomogeneous layers (i. e,, E(x’ ), ~(x’), &(x’) and J@’)

may continuoudy vary inside each layer),

According to Appendix I, once the field components EY

and K!Y have been determined through (7), the remaining
field components can also be determined.

The minus, sign in the second row of ~ and W will be

useful in the reciprocal case (i. e., for ~ = – ~) as it allows

the symmetry of these 2 X 2 matrices. One should also

note that the case in which A = O (i. e., EK = &~) will be

disregarded since an infinitesimally small imaginary part

of E can always ensure A # O.

According to (6)-(8) only hybrid modes can propagate

in the planar structure, unless $ = ~ = O everywhere in

which case TE and/or TM modes can propagate.

In everything that follows within this section, three

classes of waveguides will be considered: (i) closed

waveguides with electric and/or magnetic walls placed at

x‘ = O and x’ == d’; (ii) open waveguides extending from
I_x– –m to .x’ = w; (iii) open grounded waveguides

extending from an electric or magnetic wall placed at x’

= O to x’ = m. Hence, a finite, infinite, or semi-infinite

interval Z on x’ will be introduced as follows: (i) Z = [0,

d’] for closed waveguides; (ii) Z = ] – m, m[ for open

waveguides; (iii) 1 = [0, @[ for open grounded wave-

guides. In order to define the domain of ~, D, only sur-

face modes willl be considered for the two classes (ii) and
(iii) of open waveguides. Consequently, EV and 3.3, al-
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ways have finite energy and hence they belong to the vec-

tor space of square integrable functions over Z. However,

only a complete spectral representation for closed wave-

guides (i.e., for regular problems corresponding to a finite

interval 1) is possible within D.

At this point it is convenient to introduce the concept

of ad?oint waveguide [8] as the one which has the same

geomet~ and dimensions of the original waveguide but

filled with biisotropic media characterized by 6“, 1A”, ~“

and f“ such that, for any x’ E Z, one has

1?a=e p“=p (ha)

(~ = -f {“ = –& (llb)

Therefore, one obtains for the adjoint waveguide

3’ “ ma = fi:w” “ ma (12)

where, according to (8), (9), and (11), one can easily see

that

sa=g T77”=77T (13)

B. Bi-Orthogonality Relation

Denoting by D“ the domain of $ a, the following real-

type inner product can be introduced:

(u, u“) =
1

(ZJ,uf + u2uj) dx’ (14)
I

where u = [u,, U2]TG D and u“ = [u;, uj]Te Da. One

should note that a full characterization of both D and D”

requires that all the expressions to which operator d.,, is

applied have to be continuous over Z [ 10]. One can readily

show that this requirement is equivalent to the continuity

of the field components that are perpendicular to the x axis

(i.e., to the inhomogeneity direction).

Using definition (14), one can prove that ~a and TV”

are the adjoint operators [9] of ~ and W’, respectively,

i.e.,

(Z”u, u”)= (u, z”” u”) (15a)

(w “ U,ua) = (U, wa”ua). (15b)

The proof of (15a) can be found in Appendix II; the proof

of (15b) is trivial and therefore will be omitted. Accord-

ing to these properties and to the fact that every eigen-

value ~z of J2 is an eigenvalue of @a [9], one can readily

prove that

(P:–d;)(w “ @.,@:) =0 (16)

if ~~ e l) and @ ~ e ~”. Hence, after a suitable normal-

ization, the following biorthogonality relation holds:

where 8,~~ is the Kronecker delta. In fact, if m # n,

D; # B$ whenever ~(x’ ) or ~(x’ ) are not identically null.

According to the expressions given in Appendix I, (17)

can also be written as

where (Ex~, 3Cx~ ) are field components of the original

waveguide whereas (E~., 3C~fl) are field components of the

adjoint waveguide.

Only in the reciprocal case (~ = – ~) the original and

adjoint waveguides are identical: D = D”, ~ = .&a, and

hence the operator ~ is self-adjoint. In this case the bi-

orthogonalit y relation (18) is reduced to an orthogonality

relation in which E;. = EY. and 3C~. = XY.. One should

note that this last orthogonality relation could be alterna-

tively derived from [13, eq. (23)] if the reflection sym-

metry [19, p. 231] for chirowaveguides was used, al-

though without the formal simplicity of the spectral theory

of linear operators. Nevertheless, the bi-orthogonality re-

lation (18) is valid for the non-reciprocal case and does

not appear to have been presented elsewhere.

For closed (non-reciprocal) biisotropic waveguides and

assuming completeness, an arbitrary electromagnetic field

characterized by @ (x’) can be expanded in terms of the

complete set of eigenfunctions {@, (x’)} as follows:

@(x’) = ~:1 CYnmn(x’) (19)

where, according to (17),

CYn = (w “ m, a?:). (20)

One should also note that, for closed (reciprocal) chiro-

waveguides, the expansion (19) is rigorously guaranteed

due to the self-adjointness of the operator [9].

For open biisotropic waveguides the complete set of

modes is made up of a finite number of surface modes (the

proper eigenfunctions of ~) together with a continuum of

pseudosurface modes (the improper eigenfunctions of& )

[20], [9]. A grounded chiroslabguide, which will be ana-
lyzed in the next section, is an example of an open wave-

guide.

C. Homogeneous Layers

For the special case of homogeneous layers, the linear-

operator formalism herein derived is reduced to a 2 x 2

coupling matrix eigenvalue problem. In fact, for this case,

one obtains from (7)-(9)

where [11 ]

[

-rz -B’ /’4$-!3c= ‘p
1W-Z2-P2”

(22)
–E(f – ~)

Hence, in a similar way as shown in [11], [12], one may

write for each homogeneous biisotropic layer:

@(x’) = E “ Y(x’) (23)
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with

[111
w= (24)

Lr, TZ~ ,

and where ~ = [41, *2 ]~ is such that

with (s = 1, 2)

The plus (resp. minus) sign corresponds to s =: 1 (resp. s

= 2).

For an unbounded biisotropic medium there are two

characteristic waves, both circularly polarized and with

different propagation constants: ~+ corresponding to the

right circularly polarized wave and (3_ to the left circu-

larly polarized wave; only when & = ~ linearly polarized

fields are admissible since ~+ = ~_ and the biisotropic

medium is ‘ ‘nonactive” [7]:

D. Application to Chiral Media

For reciprocal biisotropic media, which will be referred

to simply as chiral media, one may write [1], [7]

t = -J = --ix (27)

where x is real (positive or negative) for 10SS1MS media.

As already pointed out, in this reciprocal case the lin-

ear-operator formalism which has been developed is re-

duced to a sezf-adioint problem. Moreover, from (26) and

(27), one obtains-(s =‘1, 2)

(28a)

—

where, once more, the pius (resp. minus) ~sign corre-

sponds to s = 1 (resp. s = 2).

III. RADIATION MODES OF A GROUNIJED

CHIROSLABGUIDE

As an example of application of the linear-o]perator for-

malism, the grounded chiroslabguide depicted in Fig. 1

will be analyzed. Since the grounded chiroslabguide is an

open structure extending from the perfectly conducting

plate at x’ = O to x’ = co, one should remark that, for

completeness, the radiation (or pseudosurfa.ce) modes

should be included [20]. Moreover, the radiation modes

do not actually belong to the domain of the olperator: in-

deed they are improper eigenfunctions [9].
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Fig. 1. Grounded chiroslabguide (conductor-backed chiral slabguide). The

slab, characterized by the three dimensionless parameters (c, ~, x), has

thickness t and is in contact with air.

As the surface modes of this open waveguide were al-

ready analyzed by the authors elsewhere [11] as well as

by Engheta and Pelet in [15], only the radiation modes

will be thereafter considered.

One should note, however, that the surface (resp. ra-

diation) modes of a grounded chiroslabguide are not, at

the same time, surface (resp. radiation) modes of a cor-

responding symmetric chiroslabguide with double thick-

ness as in the isotropic case. In fact, due to the general

characteristics of spatial inversion in bianisotropic media,

the conventional image theory is no longer applicable to

biisotropic media [1]. Indeed, the modes of the grounded

chiroslabguide depicted in Fig. 1 are the same (for x‘ >

O) as for an asymmetric chiroslabguide where the region

– t’ < x‘ < 0 is filled with the mirror-conjugate chiral

medium characterized by (c, p, – X) 1.

A. Eigenjimctions for the Grounded Chiroslabguide

According to (23), (24) and (28), one has for O < x’

< t’,

EY=~l+~z

KY =jy(*l – IJz)

where

~, = A[sin (uIx’) – Q cos (crlx’)]

+2 = A[~ sin (UZX’) + Q cos (CT2X’)].

The form of (30) automatically guarantees EY =
. 0.

(29a)

(29b)

(30a)

(30b)

O for x’

Imposing the other boundary condition at the perfectly

conducting plate at x’ = O, i.e., E, = O, one obtains

(31)

For the air region, i.e., for x’ > t’, one gets

EY = CYIA{COS [P(x’ – t’)] + 13 sin [p(.x’ – t’)]}

(32a)

WY = jCY2A{COS [P(x: – t’)] + B sin [p(x’ – t’]]}

(32b)

10bviously that, for x’ < – r’, the medium of this asymmetric guide is
the air—as for x’ > t’.
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where

~2=1–&. (33)

For O < p < 1 one has (fast) propagating radiation modes

with O < D < 1; for p > 1 one has evanescent radiation

modes with an imaginary ~; for p = 1, P = O and hence

there is only an oscillation without propagation. Accord-

ing to (32), EY and 3CY have the same standing-wave be-

havior in the air, i.e., one has (x’ > t’)

.K.Y=j~EY. (34)

In Appendix III expressions for the coefficients Q, al,

a2 and B are given. Coefficient A will be evaluated next

according to the orthogonality relation.

B. Orthogonality Relation for the Grounded

Chiroslabguide

Using a similar procedure to the one presented in [10],

the orthogonality relation for the radiation modes can be

easily derived. Therefore, omitting the details for the sake

of brevity, one can state the following orthogonality re-

lation:

(l(p, p’) +j@(p,p’) =6(P –p’)

where

a= !‘1
- [e(x’) ~Y(x’, P) EY(x’, P’)

o A(x’)

– #L(x’) 3CY(X’, p) 3CY(X’, p’)] al’

63= !mx(x’)— [Ey(x’, p) 3CY(X’, p’)
o A(x’)

+ 3$,(X ‘, p:

with

e(x’) = eu(x’)

/..@’) = /Ju(x’)

EY(x’, p’)] &’

+ (1 – E) .V(X’ – t’)

+ (1 – p) U(x’ – t’)

x(.x’) = X[u(x’) – U(. T’– t’)]

A(x’) = 6(X’) F(X’) – X2(X’)

and where LJ(x’ ) is the step function

(1, forx’ > 0
U(x’) =

o, forx’ < 0.

(35)

(36a)

(36b)

(37a)

(37b)

(37C)

(37d)

(38)

Obviously that, since x (x’) = O for x’ > t’, the upper

limit of the integral in (36b) can be replaced by t’. One
should also note that—as far as the authors are aware—

this orthogotiality relation has never been presented in the

literature.

Taking into consideration the expressions for EX (x’, p)

and 3CX(x’, p) presented in Appendix 1, the orthogonality

relation (35) can be rewritten as
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[E.(x’, P) ~v(x’, P’) + Wx(x’, /2) E,(x’, P’)] (ix’
o

= -(3a(p - ,0’) (39)

which is formally similar to (18).

Accordingly, for A in (30) and (32), one should write

(40)

since 6(P + p’) = O.

One should finally note that, for p = O, there is no

radiation field. In fact, according to (40) as well as to the

expression for B (Appendix III) one has A ~ O when p s

o.

IV. CONCLUSION

A linear-operator formalism for the analysis of, inho-

mogeneous biisotropic waveguides was developed. The

original and adjoint waveguides were described by eigen-

value equations related, respectively, to a 2 x 2 matrix

differential operator and its transpose. Accordingly, a bi-

orthogonality relation for the hybrid modes, which in-

volves the two-vector eigenfunctions of both the original

and adjoint waveguides was derived. In the reciprocal bi-

isotropic (or chiral) case, the original and adjoint wave-

guides are identical, therefore leading to a self-adjoint

problem. For the particular case of biisotropic multilay-

ered waveguides with homogeneous layers, the general

framework based on the theory of linear operators is re-

duced to a simple 2 x 2 matrix eigenvalue problem.

As an example of application, a general analysis of the

continuous spectrum of a grounded chiroslabguide was

also developed. Namely, a new orthogonalit y relation for

the radiation modes of this open chirowaveguide was pre-

sented.

Finally one should remark that the usefulness of this

formalism is beyond its own theoretical interest as, e.g.,

in a building-block approach. In fact, it is likely to be-

come a valuable tool in a mode matching procedure for

the study of more complex structures (e.g., step discon-

tinuities on planar chirowaveguides) where it is necessary

to describe the field components in each subregion in

terms of a complete set of transverse mode functions.

APPENDIX I

FIELD COMPONENTS OF THE HYBRID MODES

According to (l)-(5) and taking EV and 3CY as the sup-

porting field components, one obtains

EX = :(&EY + p3CY) (Ala)

3CX = –:(cEY + ~3CY) (Alb)
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and

E, = –j : ($(?XEY + @X,3CY) (A2a)

w, = j : (ei3x,Ey -t $%X3(3Y) (A2b)

where A was introduced in (10),

APPENDIX II

PROOF THAT ~a LS THE ADJOINT OPERATOR OF ~

If u = [Ml, uz]~e~ and u“ = [uf, uj]Te Da one has

to prove that

J={ E” U, ZJ”)-(U,3Z””U ”):= o. (A3)

Due to the definition (14) and according to (:8) and (13),

one obtains—after canceling the identical terms—the fol-

lowing expression:

4

J=~Ji
,=1

where

J,= JJuwxl(&3xtJ

( )1
~ axtu; dt’

J,= ~,~~’l(fa.,luj)

( )1~axlu2 dx’

J,= ~,~~t’(+xu,)

( )1$a,c<u~ dxI

‘4= i,~:’l(:a.lu;)

. u; axl
( )1

~ a,,ul dXI.

Using integration by parts, one gets

‘,=[:u’axrul-[~uaru’l
‘2=[:u2au’1[-[:u’au;ll
‘S=[+u’afu,l-[:uau’ll
‘,=[:ulaxu’l[-[:u’aru;I

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A1O)

(All)

(A12)
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with [~]z = j“(x~ ) – j(x~ ) and where x{ (resp, x;) is the

lower (resp, upper) limit of interval 1.

One can easily see that, for any class of Z, Jj = O for 1

s i. s 4, ancl hence, according to (A4), J = O (q. e.d. ).

In fact, if an electric wall is placed at x; (k = 1, 2), one

should have

ul(x~) = t(x O a.trul(x; )

+ ~(.d) a..l U2(XL ) = o (A13a)

u ‘:(xL ) = – ~(XL ) ax, u ;(XL )

+ ~(x~) axtt;(x~) = o. (A13b)

On the other hand, if a magnetic wall is placed at x;, one

should have instead

U:l(X; ) = 6(x~) axul(~; )

+ ~(x~) axl u2(x~ ) = o (A14a)

~j(x~ ) = ~(xi ) a.yrdf(xi )

– .g(xjJ axju;(x~) = o. (A14b)

Finally, if the hybrid mode is a surface wave, one should

have (s = 1, 2)

U,(+m) = U:(+co) = o (A15a)

axru, (+~) = axru:(+m) = o. (A15b)

APPENDIX III

COEFFICIENTS OF THE RADIATION MODES

Imposing the continuity of the tangential field compo-

nents at the interface (x’ = t’), coefficients Q, al, a2 and

B can be determined.

Therefore

Q = (e – Ji) sin (aIt’) – (E + ,u)Z? sin (u2t’)

(E – ~) Cos (fJ,t’) + (6 + J.L)Cos (Uzt’)
(A16)

and

al = yaz

where

al = [sin (oIt’) + R sin (u, t’)]

– Q[cos (u,t’) – COS(uzt’)]. (A18)

Finally,

B = ~~2fl+
— {Q[R sin (ulr’) + sin (azt’)1

c(lpA

+ R[cos (uIt’) – COS (uzt’)]}. (A19)

Introducing, according to (A 19), coefficient BO such that

BO
B=— (A20)

P

(A17)
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one can easily see that

lim {II sin [p(.x’ – t’)]} = l$(x’ – t’) (A21)
Q+o

in (32a) and (32 b).
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