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A Linear-Operator Formalism for the Analysis of
Inhomogeneous Biisotropic Planar Waveguides

Carlos R. Paiva, Member, IEEE and Afonso M. Barbosa, Senior Member, IEEE

Abstract—Using the theory of linear operators, guided elec-
tromagnetic wave propagation in inhomogeneous (non-recip-
rocal) biisotropic planar structures is analyzed in terms of a 2
x 2 matrix differential operator. Based on the concept of ad-
joint waveguide, a new bi-orthogonality relation for the guided
hybrid modes is derived. For the special case of reciprocal bi-
isotropic media or chiral media, the linear-operator formalism
leads to a self-adjoint problem. As an example of application,
a general analysis of the radiation modes of a grounded chiros-
labguide is also presented.

I. INTRODUCTION

BIANISOTROPIC medium with isotropic depen-

dence among the field vectors is called a biisotropic
medium [1]. This type of medium was conceived by Tel-
legen in 1948 in order to introduce the gyrator [2]. Since
then biisotropic media have also been referred to as gy-
rational or Tellegen.

Chirality is a phenomenon known in optics since the
beginning of the 19th century: in 1811 Arago discovered
that crystals of quartz are optically active [3]. Later, in
1848, Pasteur postulated that optical activity was caused
by the lack of symmetry (or chirality) of some molecules
[4]. Indeed, chirality is a geometric concept related to ob-
jects which cannot be brought into congruence with their
enantiomorphs [5].

Due to recent advances in polymer science and in the
manufacture of artificial dielectrics, it is conceivable that
chiral materials for applications at microwave or milli-
meter wavelengths can be made [5]. These advances have
prompted renewed interest on electromagnetic wave prop-
agation and radiation in chiral media.

A chiral medium, as described by some researchers
(e.g., [5], [6]), is a reciprocal medium characterized by a
three-parameter model. However, as mentioned by Mon-
zon in [7] the four-parameter (or biisotropic) medium is
also chiral in nature and obviously more general. Never-
theless, in order to avoid any risk of confusion, only the
three-parameter medium will be called chiral herein.

In this paper, based on Maxwell’s curl equations for
source-free regions together with the set of constitutive
relations for biisotropic media in the EH representation
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[1], a linear-operator formalism for the analysis of inho-
mogeneous biisotropic planar waveguides is presented. In
fact, for these (open or closed) waveguides, using the
theory of linear operators and through a suitable definition
of a two-vector transverse mode function, the problem of
guided electromagnetic wave propagation is reduced to an
eigenvalue equation related to a 2 X 2 matrix differential
operator. Introducing the concept of adjoint waveguide
[8], a new bi-orthogonality relation [9] for the guided hy-
brid modes is derived. One should note that this linear-
operator formalism is applicable to multilayered wave-
guides with inhomogeneous and non-reciprocal biiso-
tropic layers. However, no specific example of applica-
tion for this general case is worked out. Further
investigations are needed in this area. Although the math-
ematical framework of this paper also uses the theory of
linear operators as the one developed by the authors for
the analysis of anisotropic layered waveguides [10], the
present formalism is more general since it leads to a non-
self-adjoint problem due to the non-reciprocal nature of
material characteristics.

For multilayered waveguides with homogeneous lay-
ers, the general formalism is reduced to a 2 X 2 coupling
matrix eigenvalue problem which will be presented else-
where [11] and which is also similar to the analytical ap-
proach developed for anisotropic layered waveguides pre-
sented in [12].

For the special case of chiral (reciprocal) media, the
linear-operator formalism leads to a self-adjoint problem.
Therefore, with the theory developed in Section II and for
closed waveguides (regular problems), the completeness
of the set of eigenfunctions can be rigorously guaranteed
due to self-adjointness [9]. Following a different ap-
proach, Engheta and Pelet also have presented several or-
thogonality relations for (reciprocal) chirowaveguides
[13].

Finally, as an example of application, a general anal-
ysis of the radiation modes of a grounded chiroslabguide
is also presented. One should note that, as far as the au-
thors are aware, this problem has never been addressed in
the literature—in spite of its potential interest for milli-
meter-wave structures. The complementary analysis of the
surface modes in a grounded chiroslabguide is skipped
over since it was already presented by the authors in [11],
although this was on the basis of a different method which
is unable to establish any orthogonality relation. More-
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over, following different approaches, the surface modes
of a symmetric chiroslabguide were also analyzed in [14]
and [15]. Analyses for the parallel-plate chirowaveguide
[16], [17], the circular metal chirowaveguide [18], and
the circular dielectric chirowaveguide [18], have also been
presented.

II. LINEAR-OPERATOR FORMALISM

The aim of this section is to reduce the problem of
guided electromagnetic wave propagation in (open or
closed) inhomogeneous (non-reciprocal) biisotropic
planar waveguides to a linear-operator formalism. Ac-
cording to this formalism, linear independence of trans-
verse mode functions is guaranteed. Therefore, assuming
completeness, an arbitrary electromagnetic field in a bi-
isotropic planar waveguide can be expanded in terms of
these transverse mode functions.

For biisotropic media the constitutive relations may be
written as [1], [7]

D = ¢)(eE + Zy¢H)
B = po(YoE + pH)

(1a)
(1b)

where €, p, £ and ¢ are dimensionless parameters and Z;
=Yy = ko/(weg) = (wpo)/ko.

For the particular case of reciprocal media the pseudo-
scalars (¢, ¢), which are responsible for spatial dispersion
in biisotropic media, are such that £ + ¢ = 0 [7].

Introducing normalized distances marked with primes
(e.g., x' = kox, ¥ = koy, 2’ = koz) and a normalized
“‘magnetic field”” JC such that

3¢ = Z,H @)

then, from Maxwell’s curl equations for source-free re-
gions together with (1a) and (1b), one may write

—jV' x 3 = €E + £3C
jV' X E = (E + u3e

(3a)
(3b)

where time-harmonic field variation of the form exp (jwf)
is adopted and V = k,V'.

Only planar structures which are uniform and infinite
in the y direction (hence 8 /dy = 0) and inhomogeneously
filled with biisotropic media in the x direction will be ana-
lyzed. More precisely: e(x’), p(x'), &(x') and {(x') are
piecewise-continuous functions of x’ (i.e., the general
case of inhomogeneous layers is included). Moreover,
plane wave propagation of the form exp (—jfz") will be
considered; 8 is an effective refractive index given by

k

"k

)

where k 1s the longitudinal wavenumber. Herce, in (3a)
and (3b), one has

V' =08.%8 — jBz - (5)

where 8, stands for 9 /dx’.
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A. Eigenvalue Equations for Inhomogeneous
Waveguides

In order to recast the electromagnetic field equations in
terms of a single eigenvalue equation, the following def-
inition of a two-vector transverse mode function (or ei-
genfunction) is introduced:

® = [E, 3,] ©)

where superscript 7 stands for transpose. Therefore, from
(1)-(6), one obtains the eigenvalue equation

L - 0=pW -0 )

which is formally similar to [10, eq. (19)]. The linear dif-
ferential operator £ is given by

€ {
B 3, 3 . +e 0. X d. + &
£ = (®)
Cafa— ¢ —auty
X A X X A X ""
and the ‘‘weight”’ operator % by
__ € ¢
o I I
R
where
A =ep — L (10)

One should note, once again, that (7) is applicable to
non-reciprocal biisotropic multilayered waveguides with
inhomogeneous layers (i.e., e(x’), u(x'), £(x') and {(x')
may continuously vary inside each layer).

According to Appendix I, once the field components E,
and JC, have been determined through (7), the remaining
field components can also be determined.

The minus sign in the second row of £ and W will be
useful in the reciprocal case (i.¢., for £ = —¢) as it allows
the symmetry of these 2 X 2 matrices. One should also
note that the case in which A = 0 (i.e., ey = £{) will be
disregarded since an infinitesimally small imaginary part
of e can always ensure A # 0.

According to (6)-(8) only hybrid modes can propagate
in the planar structure, unless £ = { = 0 everywhere in
which case TE and/or TM modes can propagate.

In everything that follows within this section, three
classes of waveguides will be considered: (i) closed
waveguides with electric and/or magnetic walls placed at
x' = 0and x' == d’; (ii) open waveguides extending from
x' = —oo to x' = oo; (iii) open grounded waveguides
extending from an electric or magnetic wall placed at x’
= 0 tox’ = . Hence, a finite, infinite, or semi-infinite
interval 7 on x’ will be introduced as follows: (i) I = [0,
d'] for closed waveguides; (ii)) / = ]—oo, oo[ for open
waveguides; (iii) I = [0, oo[ for open grounded wave-
guides. In order to define the domain of £, D, only sur-
face modes will be considered for the two classes (ii) and
(iii) of open waveguides. Consequently, E, and JC, al-
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ways have finite energy and hence they belong to the vec-
tor space of square integrable functions over /. However,
only a complete spectral representation for closed wave-
guides (i.e., for regular problems corresponding to a finite
interval I) is possible within D.

At this point it is convenient to introduce the concept

of adjoint waveguide [8] as the one which has the same
geometry and dimensions of the original waveguide but
filled with biisotropic media characterized by ¢, u“, &°
and {“ such that, for any x’ € I, one has

e =€ pt = pu (11a)
€= ' =-L (11b)

Therefore, one obtains for the adjoint waveguide
L4 0 = B2W - @° (12)

where, according to (8), (9), and (11), one can easily see
that

£4=g7 Wwe="wT" (13)

B. Bi-Orthogonality Relation

Denoting by D“ the domain of £¢, the following real-
type inner product can be introduced:

(u, uy = g (uu] + wpuj) dx' (14)
1

where u = [u,, u,17 € D and u® = [u4, u5])" € D*. One
should note that a full characterization of both D and D*
requires that all the expressions to which operator 4, is
applied have to be continuous over / [10]. One can readily
show that this requirement is equivalent to the continuity
of the field components that are perpendicular to the x axis
(i.e., to the inhomogeneity direction). _ o

Using definition (14), one can prove that £“ and W*
are the adjoint operators [9] of £ and W, respectively,
i.e.,

(L - u,u®y = (u, £ u®) (15a)

(W u, u’y = Cu, W - u®). (15b)
The proof of (15a) can be found in Appendix II; the proof
of (15b) is trivial and therefore will be omitted. Accord-
ing to these properties and to the fact that every eigen-
value 3% of £ is an eigenvalue of £ [9], one can readily
prove that
(B = BAW - @, @7) =0 (16)
if ®,, € D and ®; € D°. Hence, after a suitable normal-
ization, the following biorthogonality relation holds:
(W - ®,, ®F) =35, a7
where §,, is the Kronecker delta. In fact, if m # n,
B2 # B2 whenever £(x') or {(x') are not identically null.
According to the expressions given in Appendix I, (17)

can also be written as

| Ees, + 30,28 dr =
I

_Bm 6mn (18)

where (E,,, JC,,) are field components of the original
waveguide whereas (E%,, 3C5,) are field components of the
adjoint waveguide.

Only in the reciprocal case (¢ = —{) the original and
adjoint waveguides are identical: D = D%, £ = £, and
hence the operator £ is self-adjoint. In this case the bi-
orthogonality relation (18) is reduced to an orthogonality
relation in which EY, = E,, and 3Cj, = JC,,. One should
note that this last orthogonality relation could be alterna-
tively derived from [13, eq. (23)] if the reflection sym-
metry [19, p. 231] for chirowaveguides was used, al-
though without the formal simplicity of the spectral theory
of linear operators. Nevertheless, the bi-orthogonality re-
lation (18) is valid for the non-reciprocal case and does
not appear to have been presented elsewhere.

For closed (non-reciprocal) biisotropic waveguides and
assuming completeness, an arbitrary electromagnetic field
characterized by ® (x’) can be expanded in terms of the
complete set of eigenfunctions {®, (x")} as follows:

[o.0]

®@) = 2 a,®,(x") (19)
where, according to (17),
o, = (W - @, ®2). (20)

One should also note that, for closed (reciprocal) chiro-
waveguides, the expansion (19) is rigorously guaranteed
due to the self-adjointness of the operator [9].

For open biisotropic waveguides the complete set of
modes is made up of a finite number of surface modes (the
proper eigenfunctions of £ ) together with a continuum of
pseudosurface modes (the improper eigenfunctions of £)
[20], [9]. A grounded chiroslabguide, which will be ana-
lyzed in the next section, is an example of an open wave-
guide.

C. Homogeneous Layers

For the special case of homogeneous layers, the linear-
operator formalism herein derived is reduced to a 2 X 2
coupling matrix eigenvalue problem. In fact, for this case,
one obtains from (7)-(9)

32®=-C-d 1)
where [11]
_ enw— =8 pE-9 }
C = . (22
{—e(é Y en — £ — B

Hence, in a similar way as shown in [11}, [12], one may
write for each homogeneous biisotropic layer:

O®x')=M- - ¥ (23)
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with
— 1 1
M= (24)
T T2
and where ¥ = [y, ¥ 17 js such that
Y = —diag (63, 03) - ¥ (25)

with (s = 1, 2)

R T
s ~< 2u>ij p <2u> (26a)

o =61 - B (26b)

2
(57

The plus (resp. minus) sign corresponds to s = 1 (resp. s
= 2).

For an unbounded biisotropic medium there are two
characteristic waves, both circularly polarized and with
different propagation constants: 3. corresponding to the
right circularly polarized wave and B_ to the left circu-
larly polarized wave; only when ¢ = ¢ linearly polarized
fields are admissible since 3, = (. and the biisotropic
medium is ‘‘nonactive’’ [7].

Biz

D. Application to Chiral Media

For reciprocal biisotropic fnedia, which will be referred
to simply as chiral media, one may write [1], [7]

£ == -Jjx @D

where  is real (positive or negative) for lossless media.

- As already pointed out, in this reciprocal case the lin-
ear-operator formalism which has been developed is re-
duced to a self-adjoint problem. Moreover, from (26) and
(27), one obtains (s = 1, 2)

. R €
Ts ty y = -
\/ U

ol =p% -6 B.= e +x (28b)

where, once more, the plus (resp. minus) sign corre-
sponds to s = 1 (resp. s = 2).

(28a)

III. RADIATION MODES OF A GROUNDED
CHIROSLABGUIDE

As an example of application of the linear-operator for-
malism, the grounded chiroslabguide depicted in Fig. 1
will be analyzed. Since the grounded chiroslabguide is an
open structure extending from the perfectly conducting
plate at x' = 0 to x’ = oo, one should remark that, for
completeness, the radiation (or pseudosurface) modes
should be included [20]. Moreover, the radiation modes
do not actually belong to the domain of the operator: in-
deed they are improper eigenfunctions [9].

(e-¢
]<T> (26¢) |
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Fig. 1. Grounded chiroslabguide (conductor-backed chiral slabguide). The
slab, characterized by the three dimensionless parameters (e, u, x), has
thickness ¢ and is in contact with air.

As the surface modes of this open waveguide were al-
ready analyzed by the authors elsewhere [11] as well as
by Engheta and Pelet in [15], only the radiation modes
will be thereafter considered.

One should note, however, that the surface (resp. ra-
diation) modes of a grounded chiroslabguide are not, at
the same time, surface (resp. radiation) modes of a cor-
responding syrametric chiroslabguide with double thick-
ness as in the isotropic case. In fact, due to the general
characteristics of spatial inversion in bianisotropic media,
the conventional image theory is no longer applicable to
biisotropic media [1]. Indeed, the modes of the grounded
chiroslabguide depicted in Fig. 1 are the same (for x’' >
0) as for an asymmetric chiroslabguide where the region
~t" < x' < 0O is filled with the mirror-conjugate chiral
medium characterized by (e, p, -0

A. Eigenfunctions for the Grounded Chiroslabguide

According to (23), (24) and (28), one has for 0 < x’"
<r,

E, =y + (292)
X, =@ — ) (2%9)
where
1#1 = A[sin (o;x') — Q cos (ox")] (30a)
¥, = A[R sin (0,x") + Q cos (6,x")].  (30b)

The form of (30) automatically guarantees E, = 0 for x’
= 0.

Imposing the other boundary condition at the perfectly
conducting plate at x’ = 0, i.e., E, = 0, one obtains

a B

0, By

For the air region, i.e., for x’ > ¢, one gets

E, = a;A{cos [p(x' — t")] + Bsin[p(x' — t")]}
(32a)

3¢, = janA{cos [p(x’ — )] + Bsin [p(x' — t")]}

(32b)

R = (31)

‘'Obviously that, for x’ < —1', the medium of this asymmetric guide is
the air—as for x’ > ¢’. .
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where
,02 =1 — 62-

For 0 < p < 1 one has (fast) propagating radiation modes
with 0 < 3 < 1; for p > 1 one has evanescent radiation
modes with an imaginary 3; for p = 1, 8 = 0 and hence
there is only an oscillation without propagation. Accord-
ing to (32), E, and JC, have the same standing-wave be-
havior in the air, i.e., one has (x’ > ¢')

(33)

L)
JCy—]-&;Ey.

(34

In Appendix III expressions for the coefficients Q, o,
«, and B are given. Coefficient 4 will be evaluated next
according to the orthogonality relation.

B. Orthogonality Relation for the Grounded
Chiroslabguide

Using a similar procedure to the one presented in [10],
the orthogonality relation for the radiation modes can be
easily derived. Therefore, omitting the details for the sake
of brevity, one can state the following orthogonality re-
lation:

Qp, p') + jB(p, 0") = 0(p — o) (35)
where
|
@ = SO AG) [ex") E,(x", p) E,(x", p")
— pux") 3, x’, p) I,y (x', p")] dx'  (36a)
® x(x') , ro
= SO A B0 p) 38,60 6
+ 3,(', ) E, (', p")] dx’ (36b)
with
exN=eUxHY+ A - Ux'"—1") (37a)
uix’) = pUE) + (1 — w UG’ = 1) (37
x&x") =xUx") -~ U’ —1t")] (37¢)
Ax') = e(x') px’) — x*&") (374d)
and where U(x’) is the step function
V') = {1, forx' >0 38
700, forx' <o, G8

Obviously that, since x(x') = 0 for x’ > ', the upper
limit of the integral in (36b) can be replaced by ¢’. One
should also note that—as far as the authors are aware—
this orthogonality relation has never been presented in the
literature.

Taking into consideration the expressions for E, (x', p)
and 3C,(x’, p) presented in Appendix I, the orthogonality
relation (35) can be rewritten as

SO [E:(x', p) 3C,(x', p7) + JC.(x', p) Ey(x', p")] dx’

= —B6(p — p")

which is formally similar to (18).
Accordingly, for 4 in (30) and (32), one should write

(39)

1 2u
A=— >
ay N7 + wd + B

(40)

since 6(p + p’) = 0.

One should finally note that, for p = 0, there is no
radiation field. In fact, according to (40) as well as to the
expression for B (Appendix III) one has A — 0 when p —
0.

IV. CoNCLUSION

A linear-operator formalism for the analysis of inho-
mogeneous biisotropic waveguides was developed. The
original and adjoint waveguides were described by eigen-
value equations related, respectively, to a 2 X 2 matrix
differential operator and its transpose. Accordingly, a bi-
orthogonality relation for the hybrid modes, which in-
volves the two-vector eigenfunctions of both the original
and adjoint waveguides was derived. In the reciprocal bi-
isotropic (or chiral) case, the original and adjoint wave-
guides are identical, therefore leading to a self-adjoint
problem. For the particular case of biisotropic multilay-

" ered waveguides with homogeneous layers, the general

framework based on the theory of linear operators is re-
duced to a simple 2 X 2 matrix eigenvalue problem.

As an example of application, a general analysis of the
continuous spectrum of a grounded chiroslabguide was
also developed. Namely, a new orthogonality relation for
the radiation modes of this open chirowaveguide was pre-
sented.

Finally one should remark that the usefulness of this
formalism is beyond its own theoretical interest as, e.g.,
in a building-block approach. In fact, it is likely to be-
come a valuable tool in a mode matching procedure for
the study of more complex structures (e.g., step discon-
tinuities on planar chirowaveguides) where it is necessary
to describe the field components in each subregion in
terms of a complete set of transverse mode functions.

ApPPENDIX I
FieLp CoMPONENTS OF THE HYBRID MODES

According to (1)-(5) and taking E, and 3C, as the sup-
porting field components, one obtains

E =5 £E, + piC,) (Ala)

=Z(

3, = —% (€E, + {3C,) (Alb)
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and

EZ

1
=J X (Eax’Ey + H’ax’gcy) (Aza)

1
R, = j 5 (@uE, + (3,30)) (A2b)

where A was introduced in (10).

. AprpeEnDIX II _

ProOF THAT £¢ 1S THE ADJOINT OPERATOR OF £

Ifu = [u;, u,]" € D and u® = [u$, u$]” € D one has
to prove that

J=(L - u,u®y —{u, £ u®y =0. (A3)

Due to the definition (14) and according to (8) and (13),
one obtains—after cancelling the identical terms—the fol-
lowing expression:

J= é)l T, (Ad)
where
J, = S {u?ax(i ax,u,>
I A
- u ax,< eru‘f>J dx’ (A5)

— us ax,<i~ ax,u2>} dx’ (A6)
J3 = S[ l:u? 6xr <'A§:' 3x:u2>
— Uy 0, ﬁa,u“ dx’ (A7)
2 Vx A x'W 1
J4 = Sl |:ul ax'<§ ax’ug>
- uf 0, —E-a,u dx’ (A8)
2 Yx A x'#1 .

Using integration by parts, one gets

€ 4 € a
Jy = 2 uj 3;:"41;1 - _K U d,uf }1 (A9)
© a b,
L =|=ud, — | =uja, Al10
2 A U uzJ A Us 0, u2_1 ( )
¢ S“ a
J3 = _Z u‘f ax uzJ — _K Uy ax Uy j|] (All)
Jy = £ u; d,.usf| — £ us 9,.u (A12)
- PR i
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with [ f1; = f(x5) — f(x]) and where x{ (resp. x;) is the
lower (resp. upper) limit of interval I.

One can easily see that, for any class of I, J; = 0 for 1
< i =< 4, and hence, according to (A4), J = 0 (q.e.d.).
In fact, if an electric wall is placed at x; (k = 1, 2), one
should have

ui(xe) = E(xi) 0 uy(xg)

+ ouxi) 0vup(xe) = 0 (Al3a)
uilet) = —§0k) dpuiCxi)
+ ulxt) Orus(e) = 0. (Al3b)

On the other hand, if a magnetic wall is placed at x;, one
should have instead

(X)) = €(xp) O ui(xe)

+ k) Oy up(xi) = 0 (Al4a)
uh(xp) = e(ri) Ocui(xi)
— E@) ousx) = 0. (Aldb)

Finally, if the hybrid mode is a surface wave, one should
have (s = 1, 2)

u;(+o0) = ug(+o) =0 (Al5a)

ax'us(ioo) = ax,uf(ioo) = 0. (Ale)

ApPPENDIX III
COEFFICIENTS OF THE RADIATION MODES

Imposing the continuity of the tangential field compo-
nents at the interface (x' = ¢'), coefficients 0, «;, a, and
B can be determined.

Therefore
0= (e — w) sin (64¢') — (¢ + p)R sin (0,¢") (A16)
(e — p) cos (oit') + (¢ + p) cos (0pt’)
and
o = Yo (A17)
where
oy = [sin (o,2') + R sin (0,¢")]
— QJcos (g;t') — cos (o5t")]. (A18)
Finally,
B = 22B+ 161R sin (0,6") + sin (0217)]
apA
+ R[cos (o,t') — cos (g,¢")]}. (A19)

Introducing, according to (A19), coeflicient By such that
_ B
P

B (A20)
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one can easily see that
lim {Bsin [p(x' — )]} = Bylx' — t')

p—0

in (32a) and (32b).

(A21)
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